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SUMMARY

While CNNs are well-adapted to raster graphics, they are less suited for parametric shapes, which use sparse sets of parameters to
express geometry. We formulate an Eulerian version of Chamfer distance, a common metric for geometric similarity, by analytically
computing a distance field to parametric primitives. We apply our new framework to a variety of 2D and 3D vectorization tasks.

DISTANCE FIELD GEOMETRY LOSS COMPARISON TO CHAMFER DISTANCE

Chamfer distance is commonly used as a loss function
in deep learning pipelines that produce geometry.

We propose a framework for computing \
geometric loss functions using distance 754' P
fields. We optimize these loss functions | /

by analytically computing distances to
parametric shapes during training.
We define general distance field loss between two shapes A and B as Because It requires samplmg points from geome’.cry, L
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rES from these artifacts, allowing us to improve deep
predictions of parametric shapes.
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We compute the loss function integral during training by sampling over a

uniform grid G:
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parameters, which define Bézier
curves in 2D or other primitives in
3D that vectorize the input. In 2D,
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